
Installing Black Duck using
Kubernetes and OpenShift
Black Duck 2024.7.1

Black Duck

Copyright ©2024 by Black Duck.

All rights reserved. All use of this documentation is subject to the license agreement between Black Duck
Software, Inc. and the licensee. No part of the contents of this document may be reproduced or transmitted
in any form or by any means without the prior written permission of Black Duck Software, Inc.

Black Duck, Know Your Code, and the Black Duck logo are registered trademarks of Black Duck Software,
Inc. in the United States and other jurisdictions. Black Duck Code Center, Black Duck Code Sight, Black
Duck Hub, Black Duck Protex, and Black Duck Suite are trademarks of Black Duck Software, Inc. All other
trademarks or registered trademarks are the sole property of their respective owners.

04-09-2024

2 •

Contents

Contents
Preface...4

Black Duck documentation.. 4
Customer support.. 4
Black Duck Software Integrity Community.. 5
Training...5
Black Duck Statement on Inclusivity and Diversity... 6
Black Duck Security Commitments... 6

1. Installing Black Duck using Kubernetes and OpenShift......................7

2. Hardware requirements...8

3. PostgreSQL versions.. 9
General Migration Process.. 9

4. Installing Black Duck using Helm..10

5. Administrative Tasks... 11
Configuring secrets encryption in Kubernetes.. 11
Generating seeds in Kubernetes...12
Configuring a backup seed..12
Managing secret rotation in Kubernetes... 13
Configuring custom volumes for Blackduck Storage...14
Configuring jobrunner thread pools... 17
Configuring readiness probes..18
Configuring HUB_MAX_MEMORY setting.. 18
Migrating on OpenShift with Helm.. 18

Installing Black Duck using Kubernetes and OpenShift • 3

Preface • Black Duck documentation

Preface

Black Duck documentation
The documentation for Black Duck consists of online help and these documents:

Title File Description

Release Notes release_notes.pdf Contains information about the new and improved
features, resolved issues, and known issues in the
current and previous releases.

Installing Black
Duck using
Docker Swarm

install_swarm.pdf Contains information about installing and upgrading
Black Duck using Docker Swarm.

Installing Black
Duck using
Kubernetes

install_kubernetes.pdf Contains information about installing and upgrading
Black Duck using Kubernetes.

Installing Black
Duck using
OpenShift

install_openshift.pdf Contains information about installing and upgrading
Black Duck using OpenShift.

Getting Started getting_started.pdf Provides first-time users with information on using
Black Duck.

Scanning Best
Practices

scanning_best_practices.pdf Provides best practices for scanning.

Getting Started
with the SDK

getting_started_sdk.pdf Contains overview information and a sample use
case.

Report
Database

report_db.pdf Contains information on using the report database.

User Guide user_guide.pdf Contains information on using Black Duck's UI.

The installation methods for installing Black Duck software in a Kubernetes or OpenShift environment are
Helm. Click the following links to view the documentation.

• Helm is a package manager for Kubernetes that you can use to install Black Duck. Black Duck supports
Helm3 and the minimum version of Kubernetes is 1.13.

Black Duck integration documentation is available on:

• https://sig-product-docs.synopsys.com/bundle/integrations-detect/page/integrations/integrations.html

• https://sig-product-docs.synopsys.com/category/cicd_integrations

Customer support
If you have any problems with the software or the documentation, please contact Black Duck Customer
Support.

4 • Installing Black Duck using Kubernetes and OpenShift

https://github.com/blackducksoftware/hub/tree/master/kubernetes/blackduck
https://sig-product-docs.synopsys.com/bundle/integrations-detect/page/integrations/integrations.html
https://sig-product-docs.synopsys.com/category/cicd_integrations

Preface • Black Duck Software Integrity Community

You can contact Black Duck Support in several ways:

• Online: https://www.synopsys.com/software-integrity/support.html

• Phone: See the Contact Us section at the bottom of our support page to find your local phone number.

To open a support case, please log in to the Black Duck Software Integrity Community site at https://
community.synopsys.com/s/contactsupport.

Another convenient resource available at all times is the online customer portal.

Black Duck Software Integrity Community
The Black Duck Software Integrity Community is our primary online resource for customer support,
solutions, and information. The Community allows users to quickly and easily open support cases and
monitor progress, learn important product information, search a knowledgebase, and gain insights from
other Software Integrity Group (SIG) customers. The many features included in the Community center
around the following collaborative actions:

• Connect – Open support cases and monitor their progress, as well as, monitor issues that require
Engineering or Product Management assistance

• Learn – Insights and best practices from other SIG product users to allow you to learn valuable lessons
from a diverse group of industry leading companies. In addition, the Customer Hub puts all the latest
product news and updates from Black Duck at your fingertips, helping you to better utilize our products
and services to maximize the value of open source within your organization.

• Solve – Quickly and easily get the answers you’re seeking with the access to rich content and product
knowledge from SIG experts and our Knowledgebase.

• Share – Collaborate and connect with Software Integrity Group staff and other customers to
crowdsource solutions and share your thoughts on product direction.

Access the Customer Success Community. If you do not have an account or have trouble accessing the
system, click here to get started, or send an email to community.manager@synopsys.com.

Training
Black Duck Software Integrity Group (SIG), Customer Education is a one-stop resource for all your Black
Duck education needs. It provides you with 24x7 access to online training courses and how-to videos.

New videos and courses are added monthly.

At Black Duck Software Integrity Group (SIG), Customer Education, you can:

• Learn at your own pace.

• Review courses as often as you wish.

• Take assessments to test your skills.

• Print certificates of completion to showcase your accomplishments.

Learn more at https://community.synopsys.com/s/education or for help with Black Duck, select Black Duck

Tutorials from the Help menu () in the Black Duck UI.

Installing Black Duck using Kubernetes and OpenShift • 5

https://www.synopsys.com/software-integrity/support.html
https://www.synopsys.com/software-integrity/support.html
https://community.synopsys.com/s/contactsupport
https://community.synopsys.com/s/contactsupport
https://community.synopsys.com/
https://community.synopsys.com/
https://community.synopsys.com/s/welcome-to-the-synopsys-community
https://community.synopsys.com/s/education

Preface • Black Duck Statement on Inclusivity and Diversity

Black Duck Statement on Inclusivity and Diversity
Black Duck is committed to creating an inclusive environment where every employee, customer, and partner
feels welcomed. We are reviewing and removing exclusionary language from our products and supporting
customer-facing collateral. Our effort also includes internal initiatives to remove biased language from our
engineering and working environment, including terms that are embedded in our software and IPs. At the
same time, we are working to ensure that our web content and software applications are usable to people of
varying abilities. You may still find examples of non-inclusive language in our software or documentation as
our IPs implement industry-standard specifications that are currently under review to remove exclusionary
language.

Black Duck Security Commitments
As an organization dedicated to protecting and securing our customers’ applications, Black Duck is
equally committed to our customers’ data security and privacy. This statement is meant to provide Black
Duck customers and prospects with the latest information about our systems, compliance certifications,
processes, and other security-related activities.

This statement is available at: Security Commitments | Black Duck

6 • Installing Black Duck using Kubernetes and OpenShift

https://www.synopsys.com/company/legal/software-integrity/security-commitments.html

1. Installing Black Duck using Kubernetes and OpenShift •

1. Installing Black Duck using Kubernetes and
OpenShift

Kubernetes and OpenShift™ are orchestration tools used for managing cloud workloads through containers.

Warning: As of the Black Duck 2023.7.0 release, Black Duckctl is no longer supported and there will
be no more updates. Black Duck deployments are supported via Helm chart, see documentation as
well as Helm chart samples, in %install dir%/kubernetes/blackduck/.

Installing Black Duck using Kubernetes and OpenShift • 7

2. Hardware requirements •

2. Hardware requirements
Black Duck hardware scaling guidelines

For scalability sizing guidelines, see Black Duck Hardware Scaling Guidelines.

Black Duck database

DANGER: Do not delete data from the Black Duck database (bds_hub) unless directed to do so by
a Black Duck Technical Support representative. Be sure to follow appropriate backup procedures.
Deletion of data will cause errors ranging from UI problems to complete failure of Black Duck to start.
Black Duck Technical Support cannot recreate deleted data. If no backups are available, Black Duck
will provide support on a best-effort basis.

Disk space requirements

The amount of required disk space is dependent on the number of projects being managed, so individual
requirements can vary. Consider that each project requires approximately 200 MB.

Black Duck Software recommends monitoring disk utilization on Black Duck servers to prevent disks from
reaching capacity which could cause issues with Black Duck.

BDBA scaling

BDBA scaling is done by adjusting the number of binaryscanner replicas and by adding PostgreSQL
resources based on the expected number of binary scans per hour that will be performed. For every 15
binary scans per hour, add the following:

• One binaryscanner replica

• One CPU for PostgreSQL

• 4GB memory to PostgreSQL

If your anticipated scan rate is not a multiple of 15, round up. For example, 24 binary scans per hour would
require the following:

• Two binaryscanner replicas,

• Two additional CPUs for PostgreSQL, and

• 8GB additional memory for PostgreSQL.

This guidance is valid when binary scans are 20% or less of the total scan volume (by count of scans).

Note: Installing Black Duck Alert requires 1 GB of additional memory.

8 • Installing Black Duck using Kubernetes and OpenShift

https://sig-product-docs.synopsys.com/bundle/blackduck-compatibility/page/topics/Black-Duck-Hardware-Scaling-Guidelines.html

3. PostgreSQL versions • General Migration Process

3. PostgreSQL versions
Black Duck 2023.10.0 supports new PostgreSQL features and functionality to improve the performance and
reliability of the Black Duck service. As of Black Duck 2023.10.0, PostgreSQL 14 is the supported version of
PostgreSQL for the internal PostgreSQL container.

Starting with Black Duck 2023.10.0, PostgreSQL settings will be automatically set in deployments using the
PostgreSQL container. Customers using external PostgreSQL will still need to apply the settings manually.

Customers using the PostgreSQL container and upgrading from versions of Black Duck between 2022.2.0
and 2023.7.x (inclusive), will be automatically migrated to PostgreSQL 14. Customers upgrading from older
versions of Black Duck will need to upgrade to 2023.7.x before upgrading to 2024.7.0.

Note: For PostgreSQL sizing guidelines, see Black Duck Hardware Scaling Guidelines.

If you choose to run your own external PostgreSQL instance, Black Duck recommends the latest version
PostgreSQL 16 for new installs.

Note: Black Duck 2024.4.0 added preliminary support for using PostgreSQL 16 as an external
database for testing only; beginning with Black Duck 2024.7.0, PostgreSQL 16 is fully supported for
production use.

CAUTION: Do not run antivirus scans on the PostgreSQL data directory. Antivirus software opens
lots of files, puts locks on files, etc. Those things interfere with PostgreSQL operations. Specific
errors vary by product but usually involve the inability of PostgreSQL to access its data files. One
example is that PostgreSQL fails with "too many open files in the system."

General Migration Process
The guidance here applies to upgrading from any PG 9.6 based Hub (releases prior to 2022.2.0) to
2022.10.0 or later.

1. The migration is performed by the blackduck-postgres-upgrader container.

2. If you are upgrading from a PostgreSQL 9.6-based Version of Black Duck:

• The folder layout of the PostgreSQL data volume is rearranged to make future PostgreSQL version
upgrades simpler.

• The UID of the owner of the data volume is changed. The new default UID is 1001, but see the
deployment-specific instructions.

3. The pg_upgrade script is run to migrate the database to PostgreSQL 13.

4. Plain ANALYZE is run on the PostgreSQL 13 database to initialize query planner statistics.

5. blackduck-postgres-upgrader exits.

Installing Black Duck using Kubernetes and OpenShift • 9

https://synopsys.atlassian.net/wiki/spaces/INTDOCS/pages/2139389953/Black+Duck+Hardware+Scaling+Guidelines

4. Installing Black Duck using Helm •

4. Installing Black Duck using Helm
A Helm chart describes a Kubernetes set of resources that are required for Helm to deploy Black Duck.
Black Duck supports Helm 3.5.4 and the minimum version of Kubernetes is 1.17.

Helm charts are available here: https://sig-repo.synopsys.com/artifactory/sig-cloudnative

Click here for instructions about installing Black Duck using Helm. The Helm chart bootstraps a Black Duck
deployment on a Kubernetes cluster using Helm package manager.

Migrating on Kubernetes with Helm

If you are upgrading from a PostgreSQL 9.6-based version of Black Duck, this migration replaces the use of
a CentOS PostgreSQL container with a Black Duck-provided container. Also, the synopsys-init container is
replaced with the blackduck-postgres-waiter container.

On plain Kubernetes, the container of the upgrade job will run as root unless overridden. However, the only
requirement is that the job runs as the same UID as the owner of the PostgreSQL data volume (which is
UID=26 by default).

On OpenShift, the upgrade job assumes that it will run with the same UID as the owner of the PostgreSQL
data volume.

10 • Installing Black Duck using Kubernetes and OpenShift

https://sig-repo.synopsys.com/artifactory/sig-cloudnative/
https://github.com/blackducksoftware/hub/tree/master/kubernetes/blackduck

5. Administrative Tasks • Configuring secrets encryption in Kubernetes

5. Administrative Tasks

Configuring secrets encryption in Kubernetes
Black Duck supports encryption at rest of critical data within the system. This encryption is based upon
a secret provisioned to the Black Duck installation by the orchestration environment (Docker Swarm or
Kubernetes). The process to create and manage this secret, create a backup secret, and rotate the secret
based upon your own organization’s security policies is outlined below.

The critical data being encrypted are the following:

• SCM Integration OAuth tokens

• SCM Integration provider OAuth application client secrets

• LDAP credentials

• SAML private signing certificates

Note: Once secrets encryption is enabled, it can never be disabled.

What is an encryption secret?

An encryption secret is a random sequence used to generate an internal cryptographic key in order to
unlock resources within the system. The encryption of secrets in Black Duck is controlled by 3 symmetric
keys, the root, backup and previous keys. These three keys are generated by seeds passed into Black Duck
as Kubernetes and Docker Swarm secrets. The three secrets are named:

• crypto-root-seed

• crypto-backup-seed

• crypto-prev-seed

In normal conditions, all three seeds will not be in active use. Unless a rotation action is in progress, the only
seed active will be the root seed.

Securing the root seed

It is important to protect the root seed. A user possessing your root seed along with a copy of the system
data could unlock and read the protected contents of the system. Some Docker Swarm or Kubernetes
systems do not encrypt their secrets at rest by default. It is strongly advised to configure these orchestration
systems to be encrypted internally so that secrets created afterwards in the system remain secure.

The root seed is necessary to recreate the system state from backup as part of a disaster recovery plan. A
copy of the root seed file should be stored in a secret location separate from the orchestration system so
that the combination of the seed plus the backup can recreate the system. Storing the root seed in the same
location as the backup files is not advised. If one set of files is leaked or stolen – both will be, therefore,
having separate locations for backup data and seed backups is recommended.

Enabling secrets encryption in Kubernetes

To enable secrets encryption in Kubernetes, you must change the value of
enableApplicationLevelEncryption to true in the values.yaml orchestration file:

if true, enables application level encryption

Installing Black Duck using Kubernetes and OpenShift • 11

5. Administrative Tasks • Generating seeds in Kubernetes

enableApplicationLevelEncryption: true

Key seed administration scripts

You can find sample administration scripts in the Black Duck GitHub public repository:

https://github.com/blackducksoftware/secrets-encryption-scripts

These scripts are not meant to be used for administering Black Duck secrets encryption, but rather to
illustrate the use of the low-level Docker and Kubernetes commands documented here. There are two sets
of scripts, each in its own sub-directory, corresponding to use on Kubernetes and Docker Swarm platforms.
There is a one-to-one correspondence between the individual scripts, where applicable, for Kubernetes and
Docker Swarm. For example, both sets of scripts contain a script called:

createInitialSeeds.sh

Generating seeds in Kubernetes

Generating seeds in OpenSSL

The content of the seeds can be generated using any mechanism that generates secure random contents
at least 1024 bytes long. As soon as a seed has been created and saved in a secret, it should be removed
from your file system and saved in a private, secure location.

The OpenSSL command is as follows:

openssl rand -hex 1024 > root_seed

Generating seeds in Kubernetes

There are many Kubernetes command lines that will create a secret. The command listed below allows
better tracking of the secret and whether it changes or not, and ensures compatibility with being able to
manipulate secrets with an online system. Secrets can be created and deleted in Kubernetes with Black
Duck actively running.

kubectl create secret generic crypto-root-seed -n $NAMESPACE --save-config --dry-run=client --
from-file=crypto-root-seed=./root_seed -o yaml | kubectl apply -f -

In order to delete the prev key secret in Kubernetes:

kubectl delete secret crypto-prev-seed -n $NAMESPACE

Configuring a backup seed
Having a backup root seed is recommended to ensure the system can be recovered in a disaster recovery
scenario. The backup root seed is an alternative root seed that can be put in place in order to recover a
system. Consequently, it must be stored securely in the same way as a root seed.

The backup root seed has some special features in that once it is associated with the system, it remains
viable even across root seed rotations. Once a backup seed is processed by the system, it should be
removed from the secrets to limit its exposure to attacks and leakage. The backup root seed may have a
different (less often) rotation schedule as the secret should not be “active” in the system at any point in time.

When you need or want to rotate a root seed, you first need to define the current root seed as the previous
root seed. You can then generate a new root seed and put that in place.

12 • Installing Black Duck using Kubernetes and OpenShift

https://github.com/blackducksoftware/secrets-encryption-scripts

5. Administrative Tasks • Managing secret rotation in Kubernetes

When the system processes these seeds, the previous root key will be used to rotate resources to use
the new root seed. After this processing, the previous root seed should be removed from the secrets to
complete the rotation and clean up the old resources.

Creating a backup root seed

Once created initially, the backup seed/key wraps the TDEK (tenant decrypt, encrypt key) low-level key. The
sample script createInitialSeeds.sh will create both a root and a backup seed. Once Black Duck is
running, it uses both keys to wrap the TDEK.

After that operation is complete and both the root and backup seeds are securely stored elsewhere, the
backup seed secret should be deleted; see sample script cleanupBackupSeed.sh.

If the root key is lost or leaked, the backup key can be used to replace the root key; see sample script
useRootSeed.sh.

Rotating the backup seed

Similarly to the root key, the backup seed should be rotated periodically. Unlike for the root seed,
where the old root seed is stored as a previous seed secret and a new root seed secret presented
to the system, the backup seed is rotated just by creating a new backup seed. See the sample script
rotateBackupSeed.sh.

After the rotation is complete, the new backup seed should be stored securely and removed from the Black
Duck host file system.

Managing secret rotation in Kubernetes
It is good practice to rotate the root seed in use on a periodic basis according to your organization’s security
policy. In order to do this, an additional secret is necessary to perform the rotation. To rotate the root
seed, the current root seed is configured as the “previous root seed”, and a newly generated root seed is
generated and configured as the root seed. Once the system processes this configuration (specifics below),
the secrets will have been rotated.

At that point in time both the old and the new seeds are able to unlock the system contents. By default, the
new root seed will be used, allowing you to test and make sure the system is working as intended. Once
everything has been verified, you complete the rotation by removing the “previous root seed”.

Once the previous root seed is removed from the system it can no longer be used to unlock the contents of
the system and can be discarded. The new root seed is now the proper root seed which should be backed
up and secured appropriately.

The root key is used to wrap the low-level TDEKs (tenant decrypt, encrypt key) that actually encrypt and
decrypt Black Duck secrets. Periodically, at times convenient for Black Duck administrators and conforming
to user organization rules, the root key should be rotated.

The procedure to rotate the root key would be create a previous seed secret with the contents of current root
seed. Then a new root seed should be created and stored in the root seed secret.

Secret rotation in Kubernetes

For Kubernetes the three operations can be done with the Black Duck running. The Kubernetes sample
script rotateRootSeed.sh will extract the root seed into prev_root, create a new root seed and then
recreate the previous and root seeds.

Installing Black Duck using Kubernetes and OpenShift • 13

5. Administrative Tasks • Configuring custom volumes for Blackduck Storage

After the rotation completes the previous seed secret should be removed; see sample script
cleanupPreviousSeed.sh. Again, this cleanup can be performed on a running Kubernetes Black Duck
instance.

The state of the rotation can be tracked by looking at crypto diagnostics tab, in the user interface by going to
Admin > System Information > crypto.

Configuring custom volumes for Blackduck Storage
The storage container may be configured to use up to three (3) volumes for the storage of file based objects.
In addition, the configuration can be set up to migrate objects from one volume to another.

Why more than one volume?

By default, the storage container uses a single volume to store all objects. This volume is sized based on
typical customer usage for stored objects. As each customer is different, it may become necessary to have
more space available than the volume can provide. Since not all volumes are expandable, it may become
necessary to add a different, larger volume and migrate the data to the new volume.

Another reason why multiple volumes may become necessary is if the volume is hosted on a remote system
(NAS or SAN) and that remote system is due to be decommissioned. A second volume hosted on a new
system would need to be created and the content moved to it.

Configuring multiple volumes

To configure custom storage providers in Kubernetes, create an override file containing the following:

storage:
 providers:
 - name: "file-1"
 enabled: true
 index: 1
 type: "file"
 preference: 20
 readonly: false
 migrationMode: "none"
 existingPersistentVolumeClaimName: ""
 pvc:
 size: "100Gi"
 storageClass: ""
 existingPersistentVolumeName: ""
 mountPath: "/opt/blackduck/hub/uploads"
 - name: "file-2"
 enabled: true
 index: 2
 type: "file"
 preference: 10
 readonly: false
 migrationMode: "none"
 existingPersistentVolumeClaimName: ""
 pvc:
 size: "200Gi"
 storageClass: ""
 existingPersistentVolumeName: ""
 mountPath: "/opt/blackduck/hub/uploads2"
 - name: "file-3"
 enabled: false
 index: 3
 type: "file"
 preference: 30
 readonly: false
 migrationMode: "none"
 existingPersistentVolumeClaimName: ""
 pvc:
 size: "100Gi"

14 • Installing Black Duck using Kubernetes and OpenShift

5. Administrative Tasks • Configuring custom volumes for Blackduck Storage

 storageClass: ""
 existingPersistentVolumeName: ""
 mountPath: "/opt/blackduck/hub/uploads3"

In the above override file both providers 1 and 2 are enabled with provider 2 having a higher priority (lower
preference number) and so all new content is directed there.

The possible settings for each provider are as follows:

Setting Details

name Default: none.
Valid values: any.
Notes: This is a cosmetic label to assist in
administration of these providers.

enabled Default: true for provider 1, false for others.
Valid values: true or false.
Notes: Indicates if the provider is enabled or not.

index Default: none.
Valid values: 1, 2, 3.
Notes: Indication of the provider number. The
sequence in the configuration file does not matter.

type Default: file.
Valid values: file.
Notes: "file" is the only supported provider type.

preference Default: index times 10.
Valid values: 0-999.
Notes: Sets the preference of the provider.
Providers with the highest priority (lowest preference
number) will have new content added to them.
NOTE: All provider preferences must be unique,
Two providers cannot share the same value.

readonly Default: false.
Valid values: true or false.
Notes: Indicates a provider is read-only. The highest
priority (lowest preference number) provider cannot
be read-only or the system cannot function.
A read only provider will not have the storage
volume altered by addition of data or removal of
data, however metadata in the database will be
manipulated to record object deletions and other
changes.

migrationMode Default: none.
Valid values: none, drain, delete, duplicate.
Notes: Configures the migration mode for the
provider, Details of what this mode is and how to
use it are provided in the migration section of this
document.

existingPersistentVolumeClaimName Default: "".
Valid values: any valid k8s identifier.

Installing Black Duck using Kubernetes and OpenShift • 15

5. Administrative Tasks • Configuring custom volumes for Blackduck Storage

Setting Details
Notes: Allows you to specify a specific persistence
volume claim name for this volume.

pvc.size Default: none.
Valid values: any valid size.
Notes: Allows you to specify the amount of space
available to the volume.

pvc.storageClass Default: "".
Valid values: any valid k8s identifier.
Notes: Allows you to specify a specific storage class
for this volume.

pvc.existingPersistentVolumeName Default: "".
Valid values: any valid k8s identifier.
Notes: Allows you to specify a specific persistence
volume name for this volume.

mountPath Default: specific to index - see notes.
Valid values:
/opt/blackduck/hub/uploads
/opt/blackduck/hub/uploads2
/opt/blackduck/hub/uploads3
Notes:
Sets the mount point for a specific provider. A
provider with index one (1) must specify the mount
point
/opt/blackduck/hub/uploads. A provider with index
two (2) must specific the mount point
/opt/blackduck/hub/uploads2. A provider with index
three (3) must specify the mount point
/opt/blackduck/hub/uploads3

Migrating Between Volumes

With multiple volumes configured, it is possible to migrate content from one or more provider volumes
to a new provider volume. This can only be done for providers that are not the highest priority (lowest
preference). To do this, configure the volumes with one of the following migration modes. Once configured,
Black Duck needs to be restarted in order to initiate the migration which is performed by a job in the
background until it is completed.

Migration Mode Details

none Purpose: To indicate no migration is in progress.
Notes: The default migration mode.

drain Purpose: This mode moves content from the
configured provider to the highest priority (lowest
preference number) provider. Once content is
moved, it is removed immediate from the source
provider.
Notes: This is a straight move operation - adding
it to the target provider and removing it from the
source.

16 • Installing Black Duck using Kubernetes and OpenShift

5. Administrative Tasks • Configuring jobrunner thread pools

Migration Mode Details

delete Purpose: This mode copies content from the
configured provider to the highest priority (lowest
preference number) provider. Once content is
copied, it is marked for deletion in the source
provider. The standard deletion retention periods
apply - after that period the content is removed.
Notes: This is a move that allows for the ability
for the system to be recovered from backup within
the retention window so that content in the source
provider remains viable. The default retention period
is 6 hours.

duplicate Purpose: This mode copies content from the
configured provider to the highest priority (lowest
preference number) provider. Once content is
copied, the source is left unaltered, including the
metadata.
Notes: After the duplicate migration, you will have
two volumes with all of the content and the metadata
in the database. If you take the next step in the
“duplicate and dump” process and unconfigure the
original volume, the files will be deleted but the
metadata will remain in the database - referencing
an unknown volume generating a warning in the
pruner jobs (a job error). To resolve the error, use
the following property to enable the pruning of the
orphaned metadata records:
storage.pruner.orphaned.data.pruning.enable=true

Configuring jobrunner thread pools
In Black Duck, there are two job pools - one that runs scheduled jobs (called the periodic pool) and one that
runs jobs that are initiated from some event, including API or user interactions (called the ondemand pool).

Each pool has two settings: max threads, and prefetch.

Max threads is the maximum number of jobs a jobrunner container can run at the same time. Adding
together periodic and ondemand max threads should never be larger than 32 as most jobs use the database
and there are at most 32 connections. It is very easy to saturate the jobrunner memory, so the default thread
counts are set very low.

Prefetch is the number of jobs each jobrunner container with grab in each round trip to the database.
Setting this higher is more efficient, but setting it lower will spread the load more evenly across multiple
jobrunners (although even load is not a design goal of jobrunner in general).

In Kubernetes, you can override the thread counts settings using the following override file:
jobrunner:
 maxPeriodicThreads: 2
 maxPeriodicPrefetch: 1
 maxOndemandThreads: 4
 maxOndemandPrefetch: 2

Installing Black Duck using Kubernetes and OpenShift • 17

5. Administrative Tasks • Configuring readiness probes

Configuring readiness probes
You can enable or disable the readiness probes by editing the following boolean flags in values.yaml:

enableLivenessProbe: true
enableReadinessProbe: true
enableStartupProbe: true

Configuring HUB_MAX_MEMORY setting
The configuration parameter HUB_MAX_MEMORY is automatically set for relevant containers in Kubernetes-
based deployments. The value is computed as a percentage of the memory limit, with 90% being the
default.

In the gen04 deployment sizings, the maxRamPercentage controls the percentage used; the values for this
setting were chosen so that HUB_MAX_MEMORY has the same values as before.

Migrating on OpenShift with Helm
If you are upgrading from a PostgreSQL 9.6-based version of Black Duck, this migration replaces the use of
a CentOS PostgreSQL container with a Black Duck-provided container. Also, the synopsys-init container is
replaced with the blackduck-postgres-waiter container.

On plain Kubernetes, the container of the upgrade job will run as root unless overridden. However, the only
requirement is that the job runs as the same UID as the owner of the PostgreSQL data volume (which is
UID=26 by default).

On OpenShift, the upgrade job assumes that it will run with the same UID as the owner of the PostgreSQL
data volume.

18 • Installing Black Duck using Kubernetes and OpenShift

	Contents
	Preface
	Black Duck documentation
	Customer support
	Black Duck Software Integrity Community
	Training
	Black Duck Statement on Inclusivity and Diversity
	Black Duck Security Commitments

	1. Installing Black Duck using Kubernetes and OpenShift
	2. Hardware requirements
	3. PostgreSQL versions
	General Migration Process

	4. Installing Black Duck using Helm
	5. Administrative Tasks
	Configuring secrets encryption in Kubernetes
	Generating seeds in Kubernetes
	Configuring a backup seed
	Managing secret rotation in Kubernetes
	Configuring custom volumes for Blackduck Storage
	Configuring jobrunner thread pools
	Configuring readiness probes
	Configuring HUB_MAX_MEMORY setting
	Migrating on OpenShift with Helm

